
Racket Programming Assignment #3: Lambda and Basic
Lisp

Learning Abstract
This programming assignment, as the name suggests, Lambda functions and

Basic Lisp programming. The first two sections show the creation of a few basic
lambda functions and lisp functions such as car and cdr. And the second two sections
put those skills to action creating a color processor and poker representation.

Task 1: Lambda
Task 1a - Three ascending integers

Three ascending integers demo

Task 1b - Make list in reverse order

Task 1c - Random number generator

Task 2: List Processing References and Constructors
Redacted Racket Session Featuring Referencers and Constructors
Demo:

Task 3: Little Color Interpreter
This task extends the sampler demo from Lesson #6 “Basic Lisp Programming.”

The simple sampler programming asks for a list and returns a random element. The
extension of this program takes two parameters: a command and a list.

Sampler Demo:

http://www.cs.oswego.edu/~blue/course_pages/2022/Spring/Csc344/selected_course_documents/Lessons/Racket/PL_Racket_Lesson_6.pdf

Sampler code:
#lang racket

(define (sampler)
(display "(?): ")
(define the-list (read))
(define the-element

(list-ref the-list (random (length the-list)))
)
(display the-element) (display "\n")
(sampler)

)

color-thing Demo 1:

color-thing Demo 2:

color-thing Code:
#lang racket
(require 2htdp/image)

;----------
;Test phrase
;(olivedrab dodgerblue indigo plum teal darkorange)

;----------
; get-random displays a random color from the list
(define (get-random list)

(define the-color (list-ref list (random (length list))))
(display (rectangle 500 20 "solid" the-color))(display "\n")
)

;-----------
; all prints all colors in the list in order recursively

(define (all list)
(cond ((not (null? (cdr list)))

(define the-color (car list))
(display (rectangle 500 20 "solid" the-color))(display "\n")
(all (cdr list))
)
((null? (cdr list))
(display (rectangle 500 20 "solid" (car list)))(display "\n")
)

)
)

;----------
; get-number displays the nth color of the list
(define (get-number index list)

(display "entered number\n")
(define the-color (list-ref list (- index 1)))
(display (rectangle 500 20 "solid" the-color))(display "\n")
)

;----------
; sampler code edited to fit the color-thing name)
(define (color-thing)

(display "(?): ")
(define input (read))
(define command (car input))
(define the-list (append (car (cdr input)) (cdr (cdr input))))

(cond ((equal? command 'random)
(get-random the-list))

((equal? command 'all)
(all the-list))

((integer? command)
(get-number command the-list))
)

(color-thing)
)

Task 4: Two Card Poker

Card Demo:

cards Code:
#lang racket

(define (ranks rank)
(list
(list rank 'C)
(list rank 'D)
(list rank 'H)
(list rank 'S)
)

)

(define (deck)
(append
(ranks 2)
(ranks 3)
(ranks 4)
(ranks 5)
(ranks 6)
(ranks 7)
(ranks 8)
(ranks 9)
(ranks 'X)

(ranks 'J)
(ranks 'Q)
(ranks 'K)
(ranks 'A)
)

)

(define (pick-a-card)
(define cards (deck))
(list-ref cards (random (length cards)))
)

(define (show card)
(display (rank card))
(display (suit card))
)

(define (rank card)
(car card)
)

(define (suit card)
(cadr card)
)

(define (red? card)
(or
(equal? (suit card) 'D)
(equal? (suit card) 'H)
)

)

(define (black? card)
(not (red? card))
)

(define (aces? card1 card2)
(and
(equal? (rank card1) 'A)
(equal? (rank card2) 'A)
)

)

pick-two-cards Demo:

higher-rank Demo:

classifier-ur Demo:
> (classify-two-cards-ur (pick-two-cards))
((K S) (8 S)): K high flush
> (classify-two-cards-ur (pick-two-cards))
((5 C) (J H)): J high
> (classify-two-cards-ur (pick-two-cards))
((9 D) (7 H)): 9 high
> (classify-two-cards-ur (pick-two-cards))
((2 S) (J D)): J high
> (classify-two-cards-ur (pick-two-cards))
((K D) (5 D)): K high flush
> (classify-two-cards-ur (pick-two-cards))
((J D) (Q D)): Q high straight flush
> (classify-two-cards-ur (pick-two-cards))
((7 H) (J H)): J high flush
> (classify-two-cards-ur (pick-two-cards))
((9 D) (2 D)): 9 high flush
> (classify-two-cards-ur (pick-two-cards))
((K C) (J H)): K high
> (classify-two-cards-ur (pick-two-cards))
((Q S) (A H)): A high
> (classify-two-cards-ur (pick-two-cards))
((5 D) (4 H)): 5 high straight
> (classify-two-cards-ur (pick-two-cards))
((8 C) (9 C)): 9 high straight flush
> (classify-two-cards-ur (pick-two-cards))
((A D) (8 C)): A high
> (classify-two-cards-ur (pick-two-cards))
((Q D) (7 S)): Q high
> (classify-two-cards-ur (pick-two-cards))
((K H) (4 C)): K high
> (classify-two-cards-ur (pick-two-cards))
((6 S) (K C)): K high
> (classify-two-cards-ur (pick-two-cards))
((9 H) (X S)): X high straight
> (classify-two-cards-ur (pick-two-cards))
((7 D) (J H)): J high
> (classify-two-cards-ur (pick-two-cards))
((6 D) (5 C)): 6 high straight
> (classify-two-cards-ur (pick-two-cards))
((K C) (A H)): A high straight
>

classifier-ur Code:
#lang racket
(require racket/trace)

(define (ranks rank)
(list
(list rank 'C)
(list rank 'D)
(list rank 'H)
(list rank 'S)
)

)

(define (deck)
(append
(ranks 2)
(ranks 3)
(ranks 4)
(ranks 5)
(ranks 6)
(ranks 7)
(ranks 8)
(ranks 9)
(ranks 'X)
(ranks 'J)
(ranks 'Q)
(ranks 'K)
(ranks 'A)
)

)

(define (pick-a-card)
(define cards (deck))
(list-ref cards (random (length cards)))
)

(define (show card)
(display (rank card))
(display (suit card))
)

(define (rank card)
(car card)
)

(define (suit card)
(cadr card)
)

(define (red? card)
(or
(equal? (suit card) 'D)
(equal? (suit card) 'H)
)

)

(define (black? card)
(not (red? card))
)

(define (aces? card1 card2)
(and
(equal? (rank card1) 'A)
(equal? (rank card2) 'A)
)

)

;----------
;pick-two-cards accepts no parameters and
;returns two different cards in a list

(define (pick-two-cards)
(define new-deck (deck))
(define c1 (list-ref new-deck (random (length new-deck))))
(define c2 (list-ref new-deck (random (length new-deck))))

(cond
((equal? c1 c2)
(pick-two-cards)
)
(else
(define list-of-two (append (cons c1 '()) (cons c2 '())))
list-of-two
)

)
)

;----------
;higher-rank accepts two parameters and
;returns one card

(define (rank-val card)
(cond

((equal? (rank card) 'A)
14
)
((equal? (rank card) 'K)
13

)
((equal? (rank card) 'Q)
12
)
((equal? (rank card) 'J)
11
)
((equal? (rank card) 'X)
10
)
(else
(rank card)
)

)
)

(define (higher-rank c1 c2)
(cond

((> (rank-val c1) (rank-val c2))
(rank c1)
)
((> (rank-val c2) (rank-val c1))
(rank c2)
)
(else
(rank c1)
)
)

)

;(trace higher-rank)

;----------;----------;----------;----------;----------
; straight? checks if two cards are next to one another ie. 2,3 J,Q
(define (straight? c1 c2)

(cond
((or (= 1 (- (rank-val c1) (rank-val c2)))

(= -1 (- (rank-val c1) (rank-val c2))))
#t
)
((= -1 (- (rank-val c1) (rank-val c2)))
#t
)
(else #f)
)

)

;-----
; flush? checks if two cards share the same suit

(define (flush? c1 c2)
(cond

((equal? (suit c1) (suit c2))
#t
)
(else #f)
)

)

;------
; pair? checks if the rank of two cards are equal
(define (pair? c1 c2)

(cond
((= (rank-val c1) (rank-val c2))
#t
)
(else #f)
)

)
;----------
;classify-two-cards-ur picks two cards and categorizes them as
; pair, high, straight, flush, or straight flush

(define (classify-two-cards-ur card-list)
(define c1 (car card-list))
(define c2 (car (cdr card-list)))

(display card-list) (display ": ")
(display (higher-rank c1 c2)) (display " high ")

(cond
((straight? c1 c2)
(display "straight ")
)
)

(cond
((flush? c1 c2)
(display "flush ")
)
)

(cond
((pair? c1 c2)
(display "pair ")
)
)

)

classifier Demo:
> (classify-two-cards (pick-two-cards))
((A C) (5 D)): ace high
> (classify-two-cards (pick-two-cards))
((7 D) (A S)): ace high
> (classify-two-cards (pick-two-cards))
((8 C) (Q D)): queen high
> (classify-two-cards (pick-two-cards))
((5 C) (K S)): king high
> (classify-two-cards (pick-two-cards))
((K S) (2 H)): king high
> (classify-two-cards (pick-two-cards))
((9 D) (Q D)): queen high flush
> (classify-two-cards (pick-two-cards))
((2 D) (7 C)): seven high
> (classify-two-cards (pick-two-cards))
((7 C) (5 H)): seven high
> (classify-two-cards (pick-two-cards))
((4 C) (J S)): jack high
> (classify-two-cards (pick-two-cards))
((9 C) (8 H)): nine high straight
> (classify-two-cards (pick-two-cards))
((6 S) (2 D)): six high
> (classify-two-cards (pick-two-cards))
((K S) (3 D)): king high
> (classify-two-cards (pick-two-cards))
((A H) (8 C)): ace high
> (classify-two-cards (pick-two-cards))
((J H) (9 D)): jack high
> (classify-two-cards (pick-two-cards))
((X D) (2 H)): ten high
> (classify-two-cards (pick-two-cards))
((J S) (Q D)): queen high straight
> (classify-two-cards (pick-two-cards))
((8 H) (7 D)): eight high straight
> (classify-two-cards (pick-two-cards))
((7 D) (3 C)): seven high
> (classify-two-cards (pick-two-cards))
((Q H) (9 H)): queen high flush
> (classify-two-cards (pick-two-cards))
((A C) (X C)): ace high flush
>

classifier Code:
#lang racket
(require racket/trace)

(define (ranks rank)
(list
(list rank 'C)
(list rank 'D)
(list rank 'H)
(list rank 'S)
)

)

(define (deck)
(append
(ranks 2)
(ranks 3)
(ranks 4)
(ranks 5)
(ranks 6)
(ranks 7)
(ranks 8)
(ranks 9)
(ranks 'X)
(ranks 'J)
(ranks 'Q)
(ranks 'K)
(ranks 'A)
)

)

(define (pick-a-card)
(define cards (deck))
(list-ref cards (random (length cards)))
)

(define (show card)
(display (rank card))
(display (suit card))
)

(define (rank card)
(car card)
)

(define (suit card)
(cadr card)
)

(define (red? card)
(or
(equal? (suit card) 'D)
(equal? (suit card) 'H)
)

)

(define (black? card)
(not (red? card))
)

(define (aces? card1 card2)
(and
(equal? (rank card1) 'A)
(equal? (rank card2) 'A)
)

)

;----------
;pick-two-cards accepts no parameters and
;returns two different cards in a list

(define (pick-two-cards)
(define new-deck (deck))
(define c1 (list-ref new-deck (random (length new-deck))))
(define c2 (list-ref new-deck (random (length new-deck))))

(cond
((equal? c1 c2)
(pick-two-cards)
)
(else
(define list-of-two (append (cons c1 '()) (cons c2 '())))
list-of-two
)

)
)

;----------
;higher-rank accepts two parameters and
;returns one card

(define (rank-val card)
(cond

((equal? (rank card) 'A)
14
)
((equal? (rank card) 'K)
13

)
((equal? (rank card) 'Q)
12
)
((equal? (rank card) 'J)
11
)
((equal? (rank card) 'X)
10
)
(else
(rank card)
)

)
)

(define (higher-rank c1 c2)
(cond

((> (rank-val c1) (rank-val c2))
(rank c1)
)
((> (rank-val c2) (rank-val c1))
(rank c2)
)
(else
(rank c1)
)
)

)

;(trace higher-rank)

;----------;----------;----------;----------;----------
; straight? checks if two cards are next to one another ie. 2,3 J,Q
(define (straight? c1 c2)

(cond
((or (= 1 (- (rank-val c1) (rank-val c2)))

(= -1 (- (rank-val c1) (rank-val c2))))
#t
)
((= -1 (- (rank-val c1) (rank-val c2)))
#t
)
(else #f)
)

)

;-----
; flush? checks if two cards share the same suit

(define (flush? c1 c2)
(cond

((equal? (suit c1) (suit c2))
#t
)
(else #f)
)

)

;------
; pair? checks if the rank of two cards are equal
(define (pair? c1 c2)

(cond
((= (rank-val c1) (rank-val c2))
#t
)
(else #f)
)

)

;-----
; word-rank takes one rank and makes it into an english
; representation ie. 1 => one
(define (word-rank card)

(define rank-list '(one two three four five six seven eight nine ten jack
queen king ace))

(cond
((integer? card)
(list-ref rank-list (- card 1))
)
((equal? 'X card)
(list-ref rank-list 9)
)
((equal? 'J card)
(list-ref rank-list 10)
)
((equal? 'Q card)
(list-ref rank-list 11)
)
((equal? 'K card)
(list-ref rank-list 12)
)
((equal? 'A card)
(list-ref rank-list 13)
)
)

)

;----------

;classify-two-cards-ur picks two cards and catagorizes them as
; pair, high, straight, flush, or straight flush

(define (classify-two-cards-ur card-list)
(define c1 (car card-list))
(define c2 (car (cdr card-list)))

(display card-list) (display ": ")
(display(word-rank (higher-rank c1 c2))) (display " high ")

(cond
((straight? c1 c2)
(display "straight ")
)
)

(cond
((flush? c1 c2)
(display "flush ")
)
)

(cond
((pair? c1 c2)
(display "pair ")
)
)

)

(define (classify-two-cards card-list)
(classify-two-cards-ur card-list)
)

